

Past Papers Standard Grade Chemistry 5 **Marking Scheme**

2005	K	U	PS			
Credit	/30	%	/30	%		
1	23+	77%	23+	77%		
2	16+	53%	17+	57%		
See General Paper	<16	< 53%	<17	< 57%		

	2005 51	tandard	Grad	le Ch	em	istry	y Cr	red	it Mar	king	g Sche	em	e	
Question	Answer	Chemistry Covered												
	В	Answer	l A	٩		В		C	D		E		F	
1a		Element	arg	gon	pota	ssium	mag	nesiur	n chloi	rine	phosphor	us	sulphur	•
		Flame Colour	Not listed in	data booklet	lil	ac	Not listed	in data boo	klet Not listed in a	ata booklet	Not listed in data b	ooklet	Not listed in data b	ooklet
		Ca atoms	have e	electro	on ar	range	emen	t of	2,8,8,2					
1b	А	Ca ²⁺ ions k	nave e	lectro	n arı	ranae	ment	of	288					
		Aroonals	has	n elec	tror	n arra	noon	 nont	of 28	R (. < .£	امما	(+-)	
		Argon also has an electron arrangement of 2,8,8 (page 6 of data booklet)												
			v	Formulae	vri 2	of Cr	ross Ov	Rever Ver Ru	le. Follow o	rrows	to get form	ula		
					-		,			lanav	of V-2			
1.	F+F					X		У		iency				
10	Both for 1 mark			V.V.	_		\searrow	/	Elen	ient =	= Suipnu	r		
				3	2		\bigtriangleup	*	Va	lencv	of Y=3			
						2		ેર	Fleme	nt - [Phosphor			
						_		<u> </u>	Lieme	1	поэрног	uS		
		Propert	γ F	raction A	۱ ۱	Fractio	on B	Fr	raction C	Fra	ction D	Fr	raction E	_
2a	A	Use	к (Camping Gas		Petro	l	Ai	rcraft Fuel	1	Diesel		Tar	_
		Chain Leng	gth	<i>C</i> ₁ - <i>C</i> ₄		C4-C	10		<i>C</i> ₁₀ - <i>C</i> ₁₆	C 1	16 -C 20		C ₂₀ +	_
		Viscosit	TY	Low	•								High	_
	E	Evaporat	ion E	asily	•								Slowly	_
25		Flammabi	lity	High	•								Low	_
		Boiling Po	oint	Low	•								High	
2	E	Answer		A			В		C		D		E .	
30		Carbohydr	ate	glucose	:	fruc	tose		maltose	S	ucrose		starch	_
	C+D Roth for 1 merk	Formula	1	C6H12O	6	C6H	12 0 6		C12H22O11	C1	2H22O11	((C6H10O5)n	_
3b		Type	y mor	Soluble	: Inide I	501 201	uble	de d	isaccharid	died	accharide	ر رامط	nsoluble	6
1 -						:1:						(rod	Succilaria	<u> </u>
4 a	C	TO DE à ga	is at u	FC, Th	e do	ning p	DOINT	mus	st de de					
	A+E Both for 1 mark	Answer	6-	A		В	6		D		E		F	
		Bonding type	Mo	lecular	Me	etallic	Mete	allic	Ionic		Molecular		Network	
4b			Covalent as	s no conducti	on Me	etallic as	Metal	lic as	Ionic as it does	not olid con	Covalent as no duction as solid (n c	Covalent as no	o id or
		Reasoning	as a sol Low boilin	lid or liquid. 1g point mean	condu s solid	ucts in both I and liquid	conducts solid and	in both d liquid	state but doe	s s	liquid.		liquid.	
			covaler	nt molecular	5	states.	stat	es.	state,	quia Low co	ovalent molecular		covalent networ	rk.
50	F	Poly	mer	poly(ethene) poly(pro			oly(prop	ropene) poly(chloroeth		roethene	e) poly	styre	ene	
	•	Mond	omer	ether	ne		propen	e	chloro	ethene	S1	yren	2	
	B+E Both for 1 mark	Answer Homologous Series	alka	ane	cvclo	B alkane	ما	C kane	alke	ne	elkene		r alkene	
5b		General Formula	CnH	2n+2	, Cn	H _{2n}	Cn	H2n+2	CnH	2n	C _n H _{2n}		CnH2n	
		Reaction with	n	o	r	10 ation	200	no	quic	kly	no		quickly	100
		Diggram of b	ut-1-ene	CAHe in	nues	tion:	160	action	decolo	11363	reaction		decolouris	63
5с	D,E 1 mark each	Answer	4	4	ques	B		С	D		E		F	
		Name	2-methy	Ipropane	cyclop	ropane	bu	utane	2-methyl	propene	cyclobuta	ne	propene	:
		Formula			C3		C	⁴ H ₁₀		1 8 18 an a f	C_4H_8		C₃H ₆	
		Isomers have	same to	ormula c	ot na	ve aitt	erent	struc	Ture (ana	neret	ore name)			
			ion: gai	n ot eie 2 : and : i	ctro	ns (eie	ctrons	s det	ore the a	rrow (on LEF I)			
6		B Precipi	anon.	Lichon		nton m	anlaa		von down	matal	from ita	ion		
	F		unenn	n ngrier Nacula	up m enlita	cinto a	spiace	53 101 n mal	ecules wi	th wat	ter added		nee hnee	Ŀ
		IN F Noutro	isation	: acide	spiris react	ino wit	th had	1101	n form ca	t and	water	ucr	033 01.60	r\
		I E Oxidati	on: loce	s of ele	ctron	ing wi	trong	oft4	er the arr	ow on	RTGHT			

7	B,E 1 mark each	 A magnesium reacts with both hydrochloric acid and sulphuric acid B all acids have a pH below 7 C both acids conduct electricity as they both contain ions D hydrochloric acid produces chlorine during electrolysis but sulphuric acid does not. E all acids contain more H⁺ ions than pure water
8	A,D 1 mark each	 A Metal X is less reactive than copper so is less readily oxidised B Metal X is more reactive than silver so X oxide is more stable than silver oxide C X is lower in Electrochemical Series so Magnesium would displace X from X nitrate D nickel is more reactive than X so nickel would react with acid more vigorously. E As X is less reactive than zinc, X is more readily oxidised than zinc
9	C,F 1 mark each	 ▲ A Equation shows the neutralisation of H⁺ and OH⁻ into water ▲ Equation shows the reverse reaction. 2nd Step in rusting is Fe²⁺ → Fe³⁺ + e⁻ ▲ C First step in rusting/corrosion of iron: Fe → Fe²⁺ + 2e⁻ ▲ D Equation shows the reverse reaction. 1st Step in rusting is Fe → Fe²⁺ + 2e⁻ ▲ E Equation shows oxidation of Hydrogen and is not a step in rusting/corrosion. ▲ F The water and oxygen required for corrosion/rusting accepts the electrons from the oxidation of iron metal atoms

Question	Answer	Chemistry Covered
10a(i)	Zn → Zn²+ + 2e ⁻	Equation for reduction of Zn ²⁺ ions to Zn atoms is on page 10 of data booklet. Oxidation is the reverse of reaction in data booklet
10a(ii)	sacrificial	This is an example of galvanising iron/steel to protect it, it is sacrificial
	cobalt is less reactive	electrons move from iron to cobalt to sacrificially
10b	than iron	protect the cobalt
11a	Diagram showing:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
11b	92.3%	$gfm C_8H_8 = (8\times12) + (8\times1) = 96 + 8 = 104g$ $%C = \frac{mass \text{ of } C}{gfm} \times 100 = \frac{96}{104} \times 100 = 92.3\%$
12a	CnH2n+2	Homologous Series Alkanes Alkenes Cycloalkanes Alcohols Carboxylic Acids General Formula C_nH_{2n+2} C_nH_{2n} C_nH_{2n} C_nH_{2n+1}OH C_nH_{2n+1}COOH
12b(i)	150-160°C	Alkane Methane Ethane Propane Butane Pentane Hexane Heptane Octane Nonane Boiling Pt (°C) -162 -89 -42 -2 36 69 98 126 - Difference (°C) 73 47 40 34 30 29 28 (27) Estimate (°C) - - - - - 153
12b(ii)	lower temperature or less energy required	Catalyst can use less energy to perform the same reaction improving safety and efficiency/costs
12c	iodomethane and iodopropane	1C from iodomethane and 3C from iodopropane join together to form 4C alkane
13a(i)	2	⁶ Li and ⁷ Li isotopes present in sample
13a(ii)	6.9	r.a.m. = $\frac{6x10 + 7x90}{100} = \frac{60 + 630}{100} = \frac{690}{100} = 6.9$
13b	ParticleNumberproton3neutron4electron2	no. of protons = atomic number (bottom number) no. of neutrons = mass number - atomic number no. of electrons = number of protons - charge
14a	to ensure all acid has reacted/neutralised	When enough copper carbonate has been added, there will be no acid left in the beaker. Excess copper carbonate will lie on the bottom and the acid will be completely neutralised.
14b	Step 4: Filter contents of beaker Step 5: Evaporate water	Step 4 Filtration: removes the unreacted/excess copper carbonate powder from the bottom of the beaker Step 5: Evaporation: turns the filtrate copper chloride solution into crystals of copper chloride
15a		Any diagram with overlapping of 3 half-filled electron clouds and a non-bonding pair of electrons
15b(i)	Ostwald Process	$NH_3 + O_2 \xrightarrow{Pt} NO_2 + H_2O$ NO ₂ gas dissolves in water to form nitric acid HNO ₃

15b(ii)	The reaction is exothermic or gives out heat	The reaction in the Ostwald Process gives out enough heat energy to maintain the high temperature once the reaction is hot enough to get started				
16a	Equation showing:	2HCl + Na ₂ S ₂ O ₃ → 2NaCl + S + SO ₂ + H ₂ O				
16b(i)	Line graph question	1/2 mark - both labels with units 1/2 mark - both scales 1/2 mark - points plotted correctly 1/2 mark - points joined				
16b(ii)	~15 second (depends on how your graph is drawn!)	Extrapolate line (i.e. extend line to right following trend on graph) Find 60°C on x-axis, follow line up to estimate value on y-axis at point				
16b(iji)	as temp increases	NB the question specifically asks about speed of reaction and not the time				
100(11)	the speed increases	taken for the reaction. Answer must talk about speed of reaction				
16c	concentration / volume of solutions darkness of X/size of conical flask	Vague answers like amount of solution and strength of solution are not accepted				
17a	C ₆ H ₁₂ O ₆	CarbohydrateglucosefructosemaltosesucrosestarchFormulaC6H12O6C6H12O6C12H22O11C12H22O11(C6H10O5)nTypemonosaccharidemonosaccharidedisaccharidedisaccharidepolysaccharide				
17b(i)	Hydrolysis	Hydrolysis is a chemical reaction where polymers e.g. starch are broken down to their monomers (e.g. glucose)				
17b(ii)	Temperature too high or Enzyme is denatured at high temp	Enzymes work best at 37°C and a permanently reshaped at high temperature and don't work again (denatured)				
18a	$CuO + H_2 \rightarrow Cu + H_2O$	Name Notes on How to Work Out Formula copper(II) oxide Use crossover rule to work out formula (Copper has valency 2) hydrogen Hydrogen is a diatomic element with formula H2 copper Copper is a metal element and comes in single Cu atoms water Water is hydrogen oxide with formula H2O.				
18b	turns red/brown colour	red/brown coloured copper metal is formed				
18c	calcium is too reactive to	Calcium is too high up electrochemical/reactivity series for extraction of the metal from the ore by this method				
19a	Arrow showing movement of electron through wires from A(left) to B(right)	Reaction at Electrode A produces electrons Reaction at electrode B accepts electrons ∴ electrons travel from A to B through wires				
19b	To complete the circuit	Ions in electrolyte are able to flow and complete the circuit between the electrodes				
19c	covalent or not ionic	Sugar is a carbohydrate C, H & O in sugar non-metals only covalent bonding				
19d(i)	Transition Metals	Platinum is listed as a transition metal on page 4 of data booklet				
19d(ii)	Turns harmful gases into harmless gases	$\begin{tabular}{ c c c c c } \hline Catalytic convertors catalyse the following reactions: \\ \hline CO \rightarrow CO_2 & NO_2 \rightarrow N_2 & unburnt hydrocarbons \rightarrow CO_2 + H_2O \\ \hline \end{array}$				
20a	Al ₂ (SO ₄) ₃	A salt is formed from the reaction of an acid with either a metal or a base. 2AI + 3H2SO4 → Al2(SO4)3 + 3H2 Metal + Acid → Salt + Hydrogen				
20Ь	0.15	$1 \text{ mol } Al = 31g$ $no. \text{ of mol} = \frac{mass}{gfm} = \frac{1.35g}{27g \text{ mol}^{-1}} = 0.05 \text{mol}$ $2Al + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2$ $2mol \qquad \qquad$				

